Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum.

Identifieur interne : 000227 ( Main/Exploration ); précédent : 000226; suivant : 000228

Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum.

Auteurs : Takao Kasuga [États-Unis] ; Melina Kozanitas ; Mai Bui ; Daniel Hüberli ; David M. Rizzo ; Matteo Garbelotto

Source :

RBID : pubmed:22529930

Descripteurs français

English descriptors

Abstract

The oomycete pathogen Phytophthora ramorum is responsible for sudden oak death (SOD) in California coastal forests. P. ramorum is a generalist pathogen with over 100 known host species. Three or four closely related genotypes of P. ramorum (from a single lineage) were originally introduced in California forests and the pathogen reproduces clonally. Because of this the genetic diversity of P. ramorum is extremely low in Californian forests. However, P. ramorum shows diverse phenotypic variation in colony morphology, colony senescence, and virulence. In this study, we show that phenotypic variation among isolates is associated with the host species from which the microbe was originally cultured. Microarray global mRNA profiling detected derepression of transposable elements (TEs) and down-regulation of crinkler effector homologs (CRNs) in the majority of isolates originating from coast live oak (Quercus agrifolia), but this expression pattern was not observed in isolates from California bay laurel (Umbellularia californica). In some instances, oak and bay laurel isolates originating from the same geographic location had identical genotypes based on multilocus simples sequence repeat (SSR) marker analysis but had different phenotypes. Expression levels of the two marker genes analyzed by quantitative reverse transcription PCR were correlated with originating host species, but not with multilocus genotypes. Because oak is a nontransmissive dead-end host for P. ramorum, our observations are congruent with an epi-transposon hypothesis; that is, physiological stress is triggered on P. ramorum while colonizing oak stems and disrupts epigenetic silencing of TEs. This then results in TE reactivation and possibly genome diversification without significant epidemiological consequences. We propose the P. ramorum-oak host system in California forests as an ad hoc model for epi-transposon mediated diversification.

DOI: 10.1371/journal.pone.0034728
PubMed: 22529930
PubMed Central: PMC3329494


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum.</title>
<author>
<name sortKey="Kasuga, Takao" sort="Kasuga, Takao" uniqKey="Kasuga T" first="Takao" last="Kasuga">Takao Kasuga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kozanitas, Melina" sort="Kozanitas, Melina" uniqKey="Kozanitas M" first="Melina" last="Kozanitas">Melina Kozanitas</name>
</author>
<author>
<name sortKey="Bui, Mai" sort="Bui, Mai" uniqKey="Bui M" first="Mai" last="Bui">Mai Bui</name>
</author>
<author>
<name sortKey="Huberli, Daniel" sort="Huberli, Daniel" uniqKey="Huberli D" first="Daniel" last="Hüberli">Daniel Hüberli</name>
</author>
<author>
<name sortKey="Rizzo, David M" sort="Rizzo, David M" uniqKey="Rizzo D" first="David M" last="Rizzo">David M. Rizzo</name>
</author>
<author>
<name sortKey="Garbelotto, Matteo" sort="Garbelotto, Matteo" uniqKey="Garbelotto M" first="Matteo" last="Garbelotto">Matteo Garbelotto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22529930</idno>
<idno type="pmid">22529930</idno>
<idno type="doi">10.1371/journal.pone.0034728</idno>
<idno type="pmc">PMC3329494</idno>
<idno type="wicri:Area/Main/Corpus">000227</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000227</idno>
<idno type="wicri:Area/Main/Curation">000227</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000227</idno>
<idno type="wicri:Area/Main/Exploration">000227</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum.</title>
<author>
<name sortKey="Kasuga, Takao" sort="Kasuga, Takao" uniqKey="Kasuga T" first="Takao" last="Kasuga">Takao Kasuga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kozanitas, Melina" sort="Kozanitas, Melina" uniqKey="Kozanitas M" first="Melina" last="Kozanitas">Melina Kozanitas</name>
</author>
<author>
<name sortKey="Bui, Mai" sort="Bui, Mai" uniqKey="Bui M" first="Mai" last="Bui">Mai Bui</name>
</author>
<author>
<name sortKey="Huberli, Daniel" sort="Huberli, Daniel" uniqKey="Huberli D" first="Daniel" last="Hüberli">Daniel Hüberli</name>
</author>
<author>
<name sortKey="Rizzo, David M" sort="Rizzo, David M" uniqKey="Rizzo D" first="David M" last="Rizzo">David M. Rizzo</name>
</author>
<author>
<name sortKey="Garbelotto, Matteo" sort="Garbelotto, Matteo" uniqKey="Garbelotto M" first="Matteo" last="Garbelotto">Matteo Garbelotto</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>California (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phytophthora (classification)</term>
<term>Phytophthora (genetics)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Plant Diseases (etiology)</term>
<term>Quercus (microbiology)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Retroelements (genetics)</term>
<term>Trees (MeSH)</term>
<term>Umbellularia (microbiology)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Californie (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (étiologie)</term>
<term>Phytophthora (classification)</term>
<term>Phytophthora (génétique)</term>
<term>Phytophthora (pathogénicité)</term>
<term>Phénotype (MeSH)</term>
<term>Quercus (microbiologie)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Rétroéléments (génétique)</term>
<term>Umbellularia (microbiologie)</term>
<term>Variation génétique (MeSH)</term>
<term>Virulence (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Retroelements</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>California</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phytophthora</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phytophthora</term>
<term>Rétroéléments</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Quercus</term>
<term>Umbellularia</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Quercus</term>
<term>Umbellularia</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Host-Pathogen Interactions</term>
<term>Microsatellite Repeats</term>
<term>Phenotype</term>
<term>Reproducibility of Results</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Arbres</term>
<term>Californie</term>
<term>Génotype</term>
<term>Interactions hôte-pathogène</term>
<term>Phénotype</term>
<term>Reproductibilité des résultats</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Répétitions microsatellites</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The oomycete pathogen Phytophthora ramorum is responsible for sudden oak death (SOD) in California coastal forests. P. ramorum is a generalist pathogen with over 100 known host species. Three or four closely related genotypes of P. ramorum (from a single lineage) were originally introduced in California forests and the pathogen reproduces clonally. Because of this the genetic diversity of P. ramorum is extremely low in Californian forests. However, P. ramorum shows diverse phenotypic variation in colony morphology, colony senescence, and virulence. In this study, we show that phenotypic variation among isolates is associated with the host species from which the microbe was originally cultured. Microarray global mRNA profiling detected derepression of transposable elements (TEs) and down-regulation of crinkler effector homologs (CRNs) in the majority of isolates originating from coast live oak (Quercus agrifolia), but this expression pattern was not observed in isolates from California bay laurel (Umbellularia californica). In some instances, oak and bay laurel isolates originating from the same geographic location had identical genotypes based on multilocus simples sequence repeat (SSR) marker analysis but had different phenotypes. Expression levels of the two marker genes analyzed by quantitative reverse transcription PCR were correlated with originating host species, but not with multilocus genotypes. Because oak is a nontransmissive dead-end host for P. ramorum, our observations are congruent with an epi-transposon hypothesis; that is, physiological stress is triggered on P. ramorum while colonizing oak stems and disrupts epigenetic silencing of TEs. This then results in TE reactivation and possibly genome diversification without significant epidemiological consequences. We propose the P. ramorum-oak host system in California forests as an ad hoc model for epi-transposon mediated diversification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22529930</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum.</ArticleTitle>
<Pagination>
<MedlinePgn>e34728</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0034728</ELocationID>
<Abstract>
<AbstractText>The oomycete pathogen Phytophthora ramorum is responsible for sudden oak death (SOD) in California coastal forests. P. ramorum is a generalist pathogen with over 100 known host species. Three or four closely related genotypes of P. ramorum (from a single lineage) were originally introduced in California forests and the pathogen reproduces clonally. Because of this the genetic diversity of P. ramorum is extremely low in Californian forests. However, P. ramorum shows diverse phenotypic variation in colony morphology, colony senescence, and virulence. In this study, we show that phenotypic variation among isolates is associated with the host species from which the microbe was originally cultured. Microarray global mRNA profiling detected derepression of transposable elements (TEs) and down-regulation of crinkler effector homologs (CRNs) in the majority of isolates originating from coast live oak (Quercus agrifolia), but this expression pattern was not observed in isolates from California bay laurel (Umbellularia californica). In some instances, oak and bay laurel isolates originating from the same geographic location had identical genotypes based on multilocus simples sequence repeat (SSR) marker analysis but had different phenotypes. Expression levels of the two marker genes analyzed by quantitative reverse transcription PCR were correlated with originating host species, but not with multilocus genotypes. Because oak is a nontransmissive dead-end host for P. ramorum, our observations are congruent with an epi-transposon hypothesis; that is, physiological stress is triggered on P. ramorum while colonizing oak stems and disrupts epigenetic silencing of TEs. This then results in TE reactivation and possibly genome diversification without significant epidemiological consequences. We propose the P. ramorum-oak host system in California forests as an ad hoc model for epi-transposon mediated diversification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kasuga</LastName>
<ForeName>Takao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kozanitas</LastName>
<ForeName>Melina</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bui</LastName>
<ForeName>Mai</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hüberli</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rizzo</LastName>
<ForeName>David M</ForeName>
<Initials>DM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garbelotto</LastName>
<ForeName>Matteo</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>EF-0622770</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018626">Retroelements</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002140" MajorTopicYN="N" Type="Geographic">California</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="Y">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="Y">etiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018626" MajorTopicYN="N">Retroelements</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027422" MajorTopicYN="N">Umbellularia</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>01</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22529930</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0034728</ArticleId>
<ArticleId IdType="pii">PONE-D-12-02554</ArticleId>
<ArticleId IdType="pmc">PMC3329494</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phytopathology. 2011 Dec;101(12):1408-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21879790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Nov;18(22):4577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19840268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1997;35:87-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 2001 Apr;77(2):123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11355567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Apr;17(4):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jul;7(7):e1002137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Oct;2(10):789-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2010 Apr 1;454(1-2):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20102733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:309-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Dec;29(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1969 Aug 9;223(5206):636-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5306374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2003 Mar;93(3):293-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:171-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Aug;98(8):860-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1975 Apr 11;188(4184):107-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1090005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1540-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 18;464(7287):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jul;13(7):1675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 May;15(6):1493-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16629806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2003 Jun;93(6):695-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2008 Feb;62(2):361-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2009 Jul;31(7):715-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19472370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2007 Jul;16(14):2958-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17614910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3306-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2004 Apr;108(Pt 4):378-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15209278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Apr;8(4):272-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Mar;47(3):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20025988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jun;17(11):2755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2011 Apr;101(4):492-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21391827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Bioinform Online. 2007 Feb 23;1:47-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4803-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16567658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Nov;73(11):9619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10516073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2007 Feb;9(2):512-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(2):RESEARCH0008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11864370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2005 May;95(5):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2008 Nov;89(Pt 11):2673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2004 Oct;94(4):481-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1984 Nov;38(6):1358-1370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Aug;96(8):846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2010 Feb;40(1):130-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Sep;99(9):1045-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bui, Mai" sort="Bui, Mai" uniqKey="Bui M" first="Mai" last="Bui">Mai Bui</name>
<name sortKey="Garbelotto, Matteo" sort="Garbelotto, Matteo" uniqKey="Garbelotto M" first="Matteo" last="Garbelotto">Matteo Garbelotto</name>
<name sortKey="Huberli, Daniel" sort="Huberli, Daniel" uniqKey="Huberli D" first="Daniel" last="Hüberli">Daniel Hüberli</name>
<name sortKey="Kozanitas, Melina" sort="Kozanitas, Melina" uniqKey="Kozanitas M" first="Melina" last="Kozanitas">Melina Kozanitas</name>
<name sortKey="Rizzo, David M" sort="Rizzo, David M" uniqKey="Rizzo D" first="David M" last="Rizzo">David M. Rizzo</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Kasuga, Takao" sort="Kasuga, Takao" uniqKey="Kasuga T" first="Takao" last="Kasuga">Takao Kasuga</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22529930
   |texte=   Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22529930" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020